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Carbon emission from fossil fuel burning annually
is very small compared to other flows/exchanges
of carbon in the global carbon reservoirs
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Source: United Nations IPCC Third Assessment Report (2001) and Second Assessment Report (1996)
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%"fé 3 Vostok time series and insolation. Series with respect to time (GT4
limescale forice on the lower axis, with indication of corresponding depths on the
10p axis) of, a, CO;; b, isotopic temperature of the atmosphere (see text); ¢, CH,:
d, ‘mom: and e, mid-June insolation at 656°N (in Wm™) (ref. 3). CO, and CH.
"‘088urements have been performed using the methods and analytical pro-
q_’d”"ss Previously described®®. However, the CO, measuring system has been

s"gh"y modified in order to increase the sensitivity of the CO, detection. The

Nature, Vol.388, p.431, 3 June 1999

thermal conductivity chromatographic detector has been replaced by a far
ionization detector which measures CO, after its transformation into CHs. T
mean resolution of the CO; (CH,) profile is about 1,500 (350) years. It goes up
about 8,000 years for CO; in the fractured zones and in the bottom part of t
record, whereas the CH, time resolution ranges between a few tens of years
4,500 years. The overall accuracy for CH, and CO, measurements are +20 p.p.k
and 2-3 p.p.m.v,, respectively. No gravitational correction has been applied.



Can one argue that lung cancer causes cigarette smoking?

“High-resolution records from Antarctic ice cores show that carbon dioxide concen-
trations increased by 80 to 100 [ppmv] 600 400 years after the warming of the last

three deglaciations.”

(Fischer et al.,

1999 Science, vol. 283, 1712-1714)

Doto Courtesy of Jean Robert Petit and colleagues
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Figure 2: Average length of 169 glaciers from 1700 to 2000 (4). The princi-
pal source of melt energy is solar radiation. Vanations in glacier mass and
length are primarily due to temperature and precipitation {5.6). This melting
trend lags the temperature increase by about 20 vears, so 1t predates the
6~-fold increase in hydrocarbon use {7) even more than shown in the figure.
Hvydrocarbon use could not have caused this shortening trend.

From Oerlemanns, J. (2005), Gruell & Smeets (2001), Robinson, et al., (2007)



THE CHILLING STARS
Svensmark & Calder, 2007

4. The empire of the Sun extends fur beyond the planets in a huge bubble

called the heliosphere, blown by the non-stop solar wind. Its irreg

this solar shield weakens, more cosmic rays reach the Earth.
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Figure 3 The totail solar magnetic flux emanating through the coronal source
sphere’?, Fs. Shown are the values derived from the geomagnetic aa data for
1868-1996 (black line bounding grey shading) and the values from the inter-
planetary observations for 1964-986 (thick blue line). The variation of the annual
means of the sunspot number{®) is shown by the area shaded purple and varies
between O and a peak of 190 for solar cycle 19.

Nature, Vol.399, p.438, 3 June 1999 _ _ _
Note doubling of solar magnetic flux in 100 yrs.



SVENSMARK & CALDER (2007) OVERVIEWW
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Figure 3: Arctic surface air temperatire compared with total solar irradiance
as measured by sunspot cycle amplitude, sunspot cycle length, solar equato-
rial rotation rate, fraction of penumbral spots, and decay rate of the 11-vear
sunspot cycle (8.9). Solar irradiance correlates well with Arctic temperature,
while hyvdrocarbon use (7) does not correlate.

From Robinson, et al (2007), Morland, et al (2007), Soon (2005), Hoyt & Schatten (1993)



From Lomborg,
“Cool It” (2007)

CHALLENGE OPPORTUNITY

VERY GOOD 1 Diseases control of HtV £ AIDS
DPFPORTUMNITIES
2 Malnutrition Pruvndmg micronutrients
3 Subsidies & Trade Trade liberalization
4 Diseases Cumru[ of rn.:llarls
GOoan 5 Malnutrition Development of new
OPPORTUNITIES agticullu:al ch‘hnn!nqlPB
& Sanitation & Water Small-scale water tech nolngy
for livelihoods
7 Sanitation & Water Community-manacged water
supply and sanitation
a Sanitatmn & Water Hasesmh on water prﬂdu:tiwty
in food production
% Government Lowering the cost of starting
: a new business
FAlIR 10 Migration Lowearing the barriers to
OPPORTUNITIES migration for skilled WG\F'Iu..rs
11 Malnutrition Impravlng m:’ant dnd child
nutrition
L IR I
12 Malnutrition FIEdLIclng 'I:he erVF!-iEHt_"F of low
: birth weight
| 43 Dizeases Scaled-up basic health services
BAD i4 Migration Guest workers programs for the
QOFPORTUNITIES unskilled
Climatea Optimal c:mbun t,ax (:ﬁza—saum
Climate 'I(ycm-\ Prntncnl
Climate Value-at-ris k carbon tax
(F100—-5450)

TasLE 1 Global priority list for spending extra resources, from the 2004
Copenhagen Consensus.




MODEL OF McMICHAEL, et al., 2006
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Figure 2: Schematic representation of how an increase in average annuat
temperature would affect annual total of temperature-related deaths, by
shifting distribution of daily temperatures to the right

Additional heat-related deaths in summer would outweigh the extra winter
deaths averted (as may happen in some northern European countries). Average
daily temperature range in temperate countries would be about 5-30°C.



EUROWINTER GROUP, LANCET (1997) 349, 1342
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datly temperature in one warm and one colod region

Lagged on temperature (see meoethods); no allowance for influenza.



Revised schematic representation of how increased average temp. would affect mortality, by shifting
distribution to right. Decreased cold-related deaths in winter would outweigh heat-related deaths
In summer, reducing overall mortality.
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FROM GOKLANY (2007

P.169 Long-Term Environmental Trends

Figure 6.15
U.S. DEATHS AND DEATH RATES FROM TorNADOS, FLOODS,
LIGHTNING, HURRICANES, AND EXTREME TEMPERATURES,

1979-2002
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Figure 23: Summary data from 279 published experiments in which plants
of all types were grown under paired stressed {(open red circles) and un-
stressed (closed blue circles) conditions (114). There were 208, 530, and 21
sets at 300, 600, and an average of about 1350 ppm CO., respectively. The
plant mixture in the 279 studies was slightly biased toward plant types that
respond less to CO, fertilization than does the actual globatl mixture. There-.
fore, the figure underestimates the expected global response. O+ enrich-

ment also allows plants to grow in drier regions, turther increasing the
rEesTmrsao.

From Idso & ldso (1974)
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