What is Vision 21?

Vision 21 is a government/industry cost-shared
partnership to develop the design basis for
integrated energy plants that will, early in the 21st
century, result in the deployment of ultra-clean
plants that can produce affordable electricity,
transportation fuels, and other high-value products
from feedstocks that include coal, gas, biomass,

and “opportunity fuels.”
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GLOSSARY

Fossil fuels Coals, petroleums, natural gases, oils from
shales and tar sands, methane hydrates, and any other
supplies from which hydrocarbons for energy applica-
tions may be extracted.

Fuels for nuclear breeder reactors These include U-238
and Th-232, which may be converted to fissile isotopes
(e.g., U-233, U-235, Pu-239, and Pu-241) as the result
of neutron capture,

Fuels for (nuclear) fission reactors The naturally occur-
ring fissile isotope U-235, as well as Pu-239 and Pu-241
produced by ncutron capture in U-238 and U-233 from
Th-232.

Fuels for (nuclear) fusion reactors Deuterium-2 (which
occurs in water as HDO or D;0) and Li-6, which con-
stitutes about 7.4% of naturally occurring lithium.

Nonrenewable resources (nonrenewables) Resources
located on the planet with estimable times for exhaus-
tion at allowable costs and use rates.
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Renewable resources (renewables) Usually defined as
extraterrestrial energy supplies such as solar resources,
but some authors include energy supplies of such
types and magnitudes that they will be available for
the estimated duration of human habitation on the
planet.

Reserves Encrgy supplies which are immediately usable
at or very close to current prices,

Resources The totality of energy supplies of specified
types that include reserves and may become usable in
time at competitive prices with improved technologies.

AN ASSESSMENT of energy reserves and resources is
properly made in the context of needs for an acceptable
standard of living for all humans. This approach may be
quantified by beginning with a discussion of current en-
ergy use in a developed country such as the United States,
noting ascertainable benefits from high energy-use levels,
estimating the possible impacts of a vigorously pursued,
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Energy (EJ) Years of availability
“Nonrenewable™ energy sources (TEJ=10"J=10%erg)  at2x 10° EJ/yr
Fusion energy from D in 1.5 x 10'® m* of water 1 x 10" 5x10°
Uranium in the earth’s crust used in breeder reactors 6 x 10" 3x 107
Uranium in the earth's crust used in fission reactors 4% 10" 2% 107
Fusion of lithium contained in seawater Ix10° 1.5 % 106
Uranium in seawater used in breeder reactors 4% 10% 2x 108
Uranium in scawater used in fission reactors 4% 10° 2x 10
Worldwide fossil-fuel resources (shale oils, coals, oils from tar sands, petroleum, >2 x 10° >1x10°
natural gas, natural gas liquids)
Us. convantionad 0il resowrces ~1 % 10° ~5 % 10
Fusion of lithium in terrestrial Li O deposits 8« 10 4% 10
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Solar energy at the “outer boundary™ of the atmosphere” 5x 109 25x10°
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Hydroelectric energy worldwide 9 x 10! 45x1072
Commercial, worldwide energy use in 1995 4x10° —
Stabilized annual worldwide energy demand as of 2050 with conservation for 10 x 107 people 2x10° -

and allowance of energy use to establish an acceptable standard of living for all

“ See the text for sources of these values.

b This is the total solar input which may be recovered in part as biomass, wind energy, OTEC, direct water photolysis, photovoltaic energy, etc,
© A 1964 assessment is 2 x 107 EJ for the Gulf Stream alone. I 0.1% of the solar input power is used for tropical waters with accessible temperature

differences >22°C (area & 60 x 10° km?), the continuous power production is 12 x 10 GW, year =378 x 10° EJ/year.
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“ This long-range, steady-state value refers to 10 x 10° people (now expected by the year 2050) with each person using 60% of the U.S. per capita © ©F the U.S. Per capita
consumption of 1998, i.c. each person enjoying the average 1998 U.S. standard of living if conservation efforts lead to a 40% energy-use reduction over ETEY-use reduction over
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Session Explores New Sources of OQil and GasX

Heavy oils and natural gas hy-
drates, which exist in vast reserves,
could potentially become a sig-
nificant source of energy, but these
resources are much more difficult
and expensive to produce than con-
ventional sources of oil and natural
gas. At a March Meeting session on
the future of fossil fuels and a related
press conference, speakers provided
assessments of these potential alter-
native sources of oil and natural gas.

Natural gas consumption has
been rising rapidly, and is expected to
increase 70% by 2025, said Timothy
Collett of USGS. The United States
currently consumes about 25 trillion
cubic feet of natural gas per year.

An alternative could be found in
gas hydrates, reported Collett. Hy-
drates are ice-like solids, in which
water molecules trap the methane
molecules in a cage-like structure.
Hydrates look a lot like ordinary ice,
but they burn when lit with a match.

Like conventional natural gas,
most gas hydrates are methane-
based, and thus produce relatively
clean burning fuel. Burning methane
adds less carbon dioxide to the atmo-
sphere than burning coal or oil.

1983, can be found on the sea floor
near the coasts and underneath the
arctic tundra. Earth contains vastly
more natural gas in hydrates than in
conventional natural gas, said Collett
in a press conference at the March
Meeting. “Hydrates are a very large,
known source of natural gas.”” he
said. There has been increasing in-
ternational interest in recovering and
using these resources, he said.
Several missions have recently
explored some of these deposits and
estimated how much natural gas hy-
drate they contain. Estimates range
from 100,000 to 300,000,000 trillion
cubic feet of natural gas hydrates on
Earth, compared with 13,000 trillion
cubic feet of conventional natural

gas. The US has about 320,000 tril-

lion cubic feet of gas hydrates, but

only 1200 trillion cubic feet of con-
ventional natural gas reserves.

More research is underway to
assess more accurately how much
hydrate natural gas exists and how
much of it might be recoverable,
Collett said.

Recovering the gas is challengxng,
but possible.




Years of known US gas-hydrate supplies at current use rates = 320.000 trillion cubic feet/25 trillion cubic feet = 12 800 years

Years of conventional US gas reserves at current use rates = 1200 trillion cubic feet/25 trillion cubic feet = 48 years



I END 1999 ESTIMATES OF RECOVERABLE COAL RESERVES (Wikipedia 2007)
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2006 WORLDWIDE COAL USE: 5.3 billion mt with 75% used for 40% of worldwide
electricity generation

China, India and adjacent countries used 1.7 billion mt with projected growth by 2025 to
2.7 billion mt,

Worldwide coal use has recently been growing at about 25% in 3 years.

Best efficiency for electricity generation has averaged about 35% but should reach about
45% with higher T, p.

World coal reserves at current use rates will last about 300 years (British Petroleum
estimate).

Coke from low-ash, low-sulfur bituminous coal (formed at 800 to 1000 degrees C) is the
fuel of choice in smelting iron ore in blast furnaces; by-products include coal tar,
ammonia, light oils, “coal gas.”

Coal Gasification with Steam and Oxygen is used to produce Syngas (hydrogen + carbon
monoxide +...) which is comparable to NG

Coal Liquefaction is accomplished via the Fischer-Tropsch Synthesis (used first in
Germany and then worldwide promoted by Sasol (South Africa). The process involves
coal gasification to make CO + H2; on passage over a suitable catalyst, light HCs are
formed.

These light HCs, in turn, produce gasoline or diesel fuel or methanol in the presence of
suitably selected catalysts; methanol may be converted to gasoline by using, for example,
the Mobil M-gas process.

Other processes for making liquid fuels are the Bergius Process (developed in Germany
during the nineteen twenties) and the Gulf Oil Solvent Refined Processes SRCI and SRC
Il (developed during the 1960s and 1970s). In both of these processes, coal is gasified to
light hydrocarbons. In the Bergius process, liquid fuels are then made by further reaction
with hydrogen: in the Gulf oil processes, liquid fuels are made by direct conversion of
light hydrocarbons to fuels.
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Table 3.1-1. Status of selected coal-gasification technologies.

Manufacturer Operating Plants

Texaco Cool Water: 2 x 1000 TPD; 117 MWg;
Ube: 4 x 500 TPD; Tennessee Eastman:
2 X 900 TPD; Ruhrchemie: 1 x 600 TPD

Shell : 250 TPD pilot plant in TX

Dow 160 MW IGCC at Plaquemine, LA;
1 x 2,500 TPD gasifiers

BGC/Lurgi 600 TPD at Westfield, Scotland
Allis-Chalmers 600 TPD at Wood River
KRW 35 TPD at Waltz Mills; 500 TPD in

China (1989 start-up)

IGT 40 TPD at Chicago; 200 TPD proposed
for France




Table 3,1-2, Future goals for 500600 MWe IGCC plants; reproduced from Ref, 3,

Comparisons refer to conventional coal-fired plants as baseline,
e —

About 10% higher efficiency, 1,e,, heat rates of 9000-9100 Btu/kiim,
corresponding o 37, 5-37, 9% efficiency,

Lower pollutant emissions, 33% less water consumption,

reduced waste-
water treafment and formation of non-hazardous,

useful by-products,
A 15% reduction in levelized electricity costs,

More rapid and cheaper construction of smaller modular units,

-_—
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Peak Oil Debunked: 43. COAL LIQUEFACTION Sponsored Links
At 20754000 btus/short ton, the U.S. has 5.2 x 10*18 btus of recoverable coal

reserves. The thermal efficiency of coal liquefaction is about 85%. ... The Qil Shale Discovery
peakoildebunked blogspot com/2005/08/43-coal-liquefaction html - 25k - Learn How Colorado and Alberta Sit
Cached - Similar pages on More Qil Than the Middle East

www DailyWealth com/Oil_Report
or) CLEANER COAL TECHNOLOGY PROGRAMME
File Format PDF/Adobe Acrobat - View as HTML
Significant coal liquefaction research and development (R&D) was started ...
War, both Germany and the UK had operational coal liquefaction plant. By ...
www dti.gov uk/files/file 18326 pdf - Similar pages

or) Fischer-Tropsch Synthesis The CAER Perspective Current Direct Coal ...
File Format PDF/Adobe Acrobat - View as HTML

Coal Liquefaction. Work at the CAER. Ed Givens, CAER. The Advanced Concepts for
Direct ... Thus, CAER indirect coal, liquefaction research has been utilized ...

www caer.uky edu/energeia/PDF/vol8-3 pdf - Similar pages

The Energy Blog: About Coal Liquefaction

Coal liquefaction is the conversion of coal into a synthetic il in order to supplement
natural sources of petroleum. It is an attractive technology because ...
thefraserdomain typepad com/energy/2005/07/about_coal_liqu.htmi - 132k -

Cached - Similar pages

coal liquefaction
www mrw interscience wiley. com/ueic/articles/a07_197/frame html - Similar pages

Asia Times Online :: China Business News - China cools down coal ...

Coal liquefaction is a process that converts coal from a solid state into liquid ... "Although
coal liquefaction promises to help ease China's oil shortage, ...

www atimes com/atimes/China_Business/HJ04Cb01 html - 47k - Cached - Similar pages

Japan To Give Asia Coal Liquefaction Technology

Tokyo (AFP) Jun 12, 2006 - Japan plans to provide Asian nations, particularly China, with
the technology to liquefy coal as part of a broader effort to ...

www_terradaily com/reports/Japan_To_Give_Asia_Coal_Liquefaction_Technology html -
23k - Cached - Similar pages

or) Microsoft PowerPoint - RM_DCL_BYU_GCEP ppt
File Format PDF/Adobe Acrobat - View as HTML

Coal liquefaction; use a solvent to effect hydrogenation. Products often solid at room
temperature ... Coal liquefaction: technically feasible, but the ...

gcep stanford edu/pdfs/RxsY3908kagqwVPacX9DLcQ/malhotra_coal_mar05 paf -

Similar pages
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(a) Hypothetical conl molecule with ~R82%_ cirbhon. The lower digcrum, in which the

shaded arcis represent alicyclic structures, shaows the spatial consiguration of o sunplificd form
of this molecule.

(b) Motecular structure of bitu-
minous coal.

Fig. 10.1-2 Hypothetical structures of coal; reproduced
from (a) P. H. Given {Ref.(93) in Ref.[3], p.
130} and (b) G. R. Hill and L. B. Lyon {Ref. (94)
in Ref.[3], p. 130}.
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Fig. 10.3-1 General process scheme for producing methane from coal; reproduced with modifi-
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Fig. 10.4-1 Identification of pressure and temperature regimes

for early German and for developing coal-lique-
faction technologies; reproduced from Ref. II.
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